wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Factories :

(i) (a3b)236 b2(ii) 25(a5b)24(a3b)2(iii) a20.36 b2(iv) a4625(v) x45x236(vi) 15(2xy)216(2xy)15

Open in App
Solution

(i) (a3b)236 b2

Using the identity x2y2=(xy)(x+y), we get,

(a3b)236 b2=(a3b)2(6b)2

=[a3b(6b)][a3b+(6b)]

=[a9b][a+3b]

(a3b)236 b2=(a9b)(a+3b)

(ii) 25(a5b)24(a3b)2

Using the identity x2y2=(xy)(x+y), we get,

25(a5b)24(a3b)2=[5(a5b)]2[2(a3b)]2

=(5a25b)2(2a6b)2

=[5a25b(2a6b)][5a25b+(2a6b)]

=[5a25b2a+6b][5a25b+2a6b]

=[3a19b][7a31b]

25(a5b)24(a3b)2=(3a19b)(7a31b)

(iii) a20.36 b2

Using the identity x2y2=(xy)(x+y), we get,

a20.36 b2=a2(0.6 b)2

=(a0.6b)(a+0.6b)

a20.36 b2=(a0.6b)(a+0.6b)

(iv) a4625

Using the identity x2y2=(xy)(x+y), we get,

a4625=(a2)2(25)2

=(a225)(a2+25)

=(a2(5)2)(a2+25)

Again using the same identity, we get,

=(a5)(a+5)(a2+25)

a4625=(a5)(a+5)(a2+25)

(v) x45x236

We have to find two numbers whose product is 36x4 and whose sum is 5x2

Thus, using Middle Term Splitting, we get,

x45x236=x49x2+4x236

=x2(x29)+4(x29)

=(x29)(x2+4)

Using the identity a2b2=(ab)(a+b), we get,

=(x3)(x+3)(x2+4)

x45x236=(x3)(x+3)(x2+4)

(vi) 15(2xy)216(2xy)15

Let t=2xy

15(2xy)216(2xy)15=15t216t15

Now we have to find find two numbers whose product is 225t2 and sum is 16

Thus, using Middle Term Splitting, we get,

=15t225t+9t15

=5t(3t5)+3(3t5)

=(3+5t)(35t)

=[3+5(2xy)][35(2xy)]

=[3+10x5y][310x+5y]

15(2xy)216(2xy)15=[3+10x5y][310x+5y]


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon