Factories :
(i) (a−3b)2−36 b2(ii) 25(a−5b)2−4(a−3b)2(iii) a2−0.36 b2(iv) a4−625(v) x4−5x2−36(vi) 15(2x−y)2−16(2x−y)−15
(i) (a−3b)2−36 b2
Using the identity x2−y2=(x−y)(x+y), we get,
⇒(a−3b)2−36 b2=(a−3b)2−(6b)2
=[a−3b−(6b)][a−3b+(6b)]
=[a−9b][a+3b]
∴(a−3b)2−36 b2=(a−9b)(a+3b)
(ii) 25(a−5b)2−4(a−3b)2
Using the identity x2−y2=(x−y)(x+y), we get,
⇒25(a−5b)2−4(a−3b)2=[5(a−5b)]2−[2(a−3b)]2
=(5a−25b)2−(2a−6b)2
=[5a−25b−(2a−6b)][5a−25b+(2a−6b)]
=[5a−25b−2a+6b][5a−25b+2a−6b]
=[3a−19b][7a−31b]
∴ 25(a−5b)2−4(a−3b)2=(3a−19b)(7a−31b)
(iii) a2−0.36 b2
Using the identity x2−y2=(x−y)(x+y), we get,
⇒a2−0.36 b2=a2−(0.6 b)2
=(a−0.6b)(a+0.6b)
∴a2−0.36 b2=(a−0.6b)(a+0.6b)
(iv) a4−625
Using the identity x2−y2=(x−y)(x+y), we get,
⇒a4−625=(a2)2−(25)2
=(a2−25)(a2+25)
=(a2−(5)2)(a2+25)
Again using the same identity, we get,
=(a−5)(a+5)(a2+25)
∴a4−625=(a−5)(a+5)(a2+25)
(v) x4−5x2−36
We have to find two numbers whose product is −36x4 and whose sum is −5x2
Thus, using Middle Term Splitting, we get,
⇒x4−5x2−36=x4−9x2+4x2−36
=x2(x2−9)+4(x2−9)
=(x2−9)(x2+4)
Using the identity a2−b2=(a−b)(a+b), we get,
=(x−3)(x+3)(x2+4)
∴x4−5x2−36=(x−3)(x+3)(x2+4)
(vi) 15(2x−y)2−16(2x−y)−15
Let t=2x−y
⇒15(2x−y)2−16(2x−y)−15=15t2−16t−15
Now we have to find find two numbers whose product is 225t2 and sum is −16
Thus, using Middle Term Splitting, we get,
=15t2−25t+9t−15
=5t(3t−5)+3(3t−5)
=(3+5t)(3−5t)
=[3+5(2x−y)][3−5(2x−y)]
=[3+10x−5y][3−10x+5y]
∴15(2x−y)2−16(2x−y)−15=[3+10x−5y][3−10x+5y]