Factorise: (l + m)2 - (l - m)2
Factorise the given expression
The given expression is ,
(l+m)2–(l–m)2=[(l+m)+(l–m)][(l+m)-(l–m)] {using identity x2–y2=(x+y)(x–y)}
=(l+m+l-m)(l+m-l+m)=(2l)(2m)=4ml
Hence , the answer is 4ml
Factorise the following expressions.
(i) a2 + 8a + 16
(ii) p2 − 10p + 25
(iii) 25m2 + 30m + 9
(iv) 49y2 + 84yz + 36z2
(v) 4x2 − 8x + 4
(vi) 121b2 − 88bc + 16c2
(vii) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)
(viii) a4 + 2a2b2 + b4
Factorise :
(l+m)2−(l−m)2