We introduce a=x2−2x. Then the expression is a2−23a+120. We observe that −23=(−15)+(−8) and 120=(−15)(−8). Hence we may write
a2−23a+120=a2−15a−8a+120=a(a−15)−8(a−15)=(a−15)(a−8)
Hence
(x2−2x)2−23(x2−2x)+120=(x2−2x−15)(x2−2x−8)
Further we see
x2−2x−15=x2−5x+3x−15=x(x−5)+3(x−5)=(x+3)(x−5)
x2−2x−8=x(x−4)+2(x−4)=(x+2)(x−4)
We obtain
(x2−2x)2−23(x2−2x)+120=(x+3)(x−5)(x+2)(x−4)