The correct option is A (m2+m+1)(m2−m+1)
Given, the expression is
m4+m2+1.
The above expression can be written as,
=m4+2m2−m2+1
=m4+2m2+1−m2
=(m2)2+2m2+12−m2
Now, applying the identity
(a+b)2=a2+2ab+b2, we get
(m2+1)2−m2
[Using the identity: a2−b2=(a+b)(a−b)]
=(m2+1+m)(m2+1−m)
=(m2+m+1)(m2−m+1)