wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Factorise:
p3(qr)3+q3(rp)3+r3(pq)3

Open in App
Solution

We know the corollary: if a+b+c=0 then a3+b3+c3=3abc

Using the above corollary taking a=p(qr), b=q(rp) and c=r(pq), we have a+b+c=p(qr)+q(rp)+r(pq)=pqpr+qrpq+prqr=0 then the equation p3(qr)3+q3(rp)3+r3(pq)3 can be factorised as follows:

p3(qr)3+q3(rp)3+r3(pq)3=3[p(qr)×q(rp)×r(pq)]=3pqr(qr)(rp)(pq)

Hence, p3(qr)3+q3(rp)3+r3(pq)3=3pqr(qr)(rp)(pq)


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Components
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon