We know the identity a3−b3=(a−b)(a2+b2+ab)
Using the above identity, the equation a3−b3−a+b can be factorised as follows:
a3−1a3−2a+2a=(a3−1a3)−2(a−1a)=((a−1a)[(a)2+(1a)2+(a×1a)])−2(a−1a)
=[(a−1a)(a2+1a2+1)]−2(a−1a)=(a−1a)(a2+1a2+1−2)=(a−1a)(a2+1a2−1)
Hence, a3−1a3−2a+2a=(a−1a)(a2+1a2−1)