The correct option is B (√bx+√a)(√ax+√b)
We have to factorise:
√ab(x2+1)+x(a+b)
=√abx2+√ab+ax+bx
=√abx2++ax+bx+√ab
Also,
√ab×√ab=ab
=1×ab
=a×b
and
a=√a×√a,b=√b×√b
Hence,
=√abx2+ax+bx+√ab
=√a×√bx2+√a×√ax+√b×√bx+√a×√b
=√ax(√bx+√a)+√b(√bx+√a)
=(√bx+√a)(√ax+√b)
Hence, the correct answer is option (b).