i) 125p3+q3
=(5p)3+q3
Here, a=5p and b=q
∴125p3+q3=(5p+q)[(5p)2–(5p)(q)+q2]
…[∵a3+b3=(a+b)(a2–ab+b2)]
=(5p+q)(25p2–5pq+q2)
(ii) 24a3+81b3 [Taking out the common factor 3]\)
=3[(2a)3+(3b)3]
Here, A=2a and B=3b
∴24a3+81b3
=3{(2a+3b)[(2a)2–(2a)(3b)+(3b)2]}
…[∵A3+B3=(A+B)(A2–AB+B2)]
=3(2a+3b)(4a2–6ab+9b2)