wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Factorise the expressions and divide them as directed.

(i) (y2 + 7y + 10) ÷ (y + 5)

(ii) (m2 − 14m − 32) ÷ (m + 2)

(iii) (5p2 − 25p + 20) ÷ (p − 1)

(iv) 4yz(z2 + 6z − 16) ÷ 2y(z + 8)

(v) 5pq(p2 − q2) ÷ 2p(p + q)

(vi) 12xy(9x2 − 16y2) ÷ 4xy(3x + 4y)

(vii) 39y3(50y2− 98) ÷ 26y2(5y+ 7)

Open in App
Solution

(i) (y2 + 7y + 10) = y2 + 2y + 5y + 10

= y (y + 2) + 5 (y + 2)

= (y + 2) (y + 5)

(ii) m2 − 14m − 32 = m2 + 2m − 16m − 32

= m (m + 2) − 16 (m + 2)

= (m + 2) (m − 16)

(iii) 5p2 − 25p + 20 = 5(p2 − 5p + 4)

= 5[p2 − p − 4p + 4]

= 5[p(p −1) − 4(p −1)]

= 5(p −1) (p − 4)


​​​​​​​​​​​​​​​​​​​​​

(iv) 4yz(z2 + 6z −16) = 4yz [z2 − 2z + 8z − 16]

= 4yz [z(z − 2) + 8(z − 2)]

= 4yz(z − 2) (z + 8)

(v) 5pq(p2 − q2) = 5pq (p − q) (p + q)

(vi) 12xy(9x2 − 16y2) = 12xy[(3x)2 − (4y)2] = 12xy(3x − 4y) (3x + 4y)

(vii) 39y3(50y2 − 98) = 3 × 13 × y × y × y × 2[(25y2 − 49)]

= 3 × 13 × 2 × y × y × y × [(5y)2 − (7)2]

= 3 × 13 × 2 × y × y × y (5y − 7) (5y + 7)

26y2(5y + 7) = 2 × 13 × y × y × (5y + 7)

39y3(50y2 − 98) ÷26y2 (5y + 7)


flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Common Factors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon