The correct option is B 9(a−b)(2a−b)(4b−5a)
We know,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
If, a+b+c=0 then,
a3+b3+c3−3abc=0
=>a3+b3+c3=3abc
Now,
27(a−b)3+(2a−b)3+(4b−5a)3
=(3a−3b)3+(2a−b)3+(4b−5a)3
Here,
a=3a−3b
b=2a−b
c=4b−5a
Now,
a+b+c=3a−3b+2a−b+4b−5a
=0
Thus,
(3a−3b)3+(2a−b)3+(4b−5a)3=9(a−b)(2a−b)(4b−5a)