The correct option is B (3x+y−3)(9x2−18x+9−3xy+3y+y2)
27(x−1)3+y3
Let (x−1)=a
Therefore,
27a3+y3
=(3a)3+(y)3
Using,a3+b3=(a+b)(a2−ab+b2)
=[(3a+y)][(3a)2−(3a)(y)+(y)2]
=(3a+y)[(9a)2−3ay+(y)2]
Resubstituting the value we get,
[3(x−1)+y][9(x−1)2−3y(x−1)+y2]
=(3x−3+y)[9(x2−2x+1)−3xy+3y+y2]
=(3x+y−3)(9x2−18x+9−3xy+3y+y2)