wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Factorise the following:
(2x3y)3+(4z2x)3+(3y4z)3

Open in App
Solution

We know the corollary: if a+b+c=0 then a3+b3+c3=3abc

Using the above corollary taking a=(2x3y), b=(4z2x) and c=(3y4z), we have a+b+c=2x3y+4z2x+3y4z=0 then the value of (2x3y)3+(4z2x)3+(3y4z)3 is:

(2x3y)3+(4z2x)3+(3y4z)3=3[(2x3y)×(4z2x)×(3y4z)]=3(2x3y)(4z2x)(3y4z)
=6(2x3y)(2zx)(3y4z)

Hence, (2x3y)3+(4z2x)3+(3y4z)3=6(2x3y)(2zx)(3y4z)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon