The correct option is A 3(5x−6y)(7z−5x)(6y−7z)
We know,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
If, a+b+c=0 then,
a3+b3+c3−3abc=0
=>a3+b3+c3=3abc
Now,
(5x−6y)3+(7z−5x)3+(6y−7z)3
Here,
a=5x−6y
b=7z−5x
c=6y−7z
Now,
a+b+c=5x−6y+7z−5x+6y−7z
=0
Thus,
(5x−6y)3+(7z−5x)3+(6y−7z)3=3(5x−6y)(7z−5x)(6y−7z)