(i)p2−q2=(p−q)(q+p)[∵a2−b2=(a−b)(a+b)]
(ii)4x2−25y2=(2x)2−(5y)2=(2x−5y)(2x+5y)[∵a2−b2=(a−b)(a+b)]
(iii)y2−4=y2−22=(y−2)(y+2)[∵a2−b2=(a−b)(a+b)]
(iv)p2−125=52p2−1=(5p)2−(1)2(5p−1)(5p+1)[∵a2−b2=(a−b)(a+b)]
(v)9x2−116y2=(12xy)2−(1)2=(112xy−1)(112xy+1)[∵a2−b2=(a−b)(a+b)]
(vi)12y2−8z2=(2√3y)2−(2√2z)2=(2√3y−2√2z)(2√3y+2√2z)[∵a2−b2=(a−b)(a+b)]