(i)
1–64a3–12a+48a2=(1)3–(4a)3–3×12×4a+3×1×(4a)2
[Using the identity (a–b)3=a3–b3–3a2b+3ab2]
=(1–4a)3=(1–4a)(1–4a)(1−4a)
(ii)
8p3+125p2+625p+1125
=(2p)3+3×(2p)2×15+3×(2p)×(15)2+(15)3
[Using the identity, (a+b)3=a3+b3+3a2b+3ab2]
= (2p+15 )3
=(2p+15)(2p+15)(2p+15)