Factorise the following :
(p−3q)3+(3q−7r)3+(7r−p)3
We know the algebraic identity is,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
If, a+b+c=0 then,
⇒a3+b3+c3−3abc=0(a2+b2+c2−ab−bc−ca)
⇒a3+b3+c3=0
⇒a3+b3+c3=3abc
Now,
(p−3q)3+(3q−7r)3+(7r−p)3
Here,
a=p−3q
b=3q−7r
c=7r−p
Now,
p−3q+3q−7r+7r−p=0
Thus,
(p−3q)3+(3q−7r)3+(7r−p)3=3(p−3q)(3q−7r)(7r−p)
Hence, Option C is correct.