The correct option is A (x2−x−3)(x4+x3+4x2−3x+9)
Given, x6−10x3−27
=x6−x3−27−9x3
=(x2)3+(−x)3+(−3)3−3(x2)(−x)(−3)
Using, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−ac−bc)
=(x2−x−3)((x2)2+(−x)2+(−3)2−(x2)(−x)−(x2)(−3)−(−x)(−3))
=(x2−x−3)(x4+x2+9+x3+3x2−3x)
=(x2−x−3)(x4+x3+4x2−3x+9)