Factorise x2+5x+6 by using the Factor Theorem.
(x+2)(x+3)
Let p(x)=x2+5x+6.
Let factors be (x−a) and (x−b)
So, p(x)=(x–a)(x–b)
⇒p(x)=x2–bx–ax+ab
On comparing the constants, we get ab = 6.
The factors of 6 are -1,1, 2,-2,-3 and 3.
Now, p(−2)=(−2)2+(5×(−2))+6=4–10+6=0.
So, (x +2) is a factor of p(x).
Also, p(−3)=(−3)2+(5×(−3))+6=9–15+6=0
So, (x + 3) is also a factor of p(x).
Therefore, x2+5x+6=(x+2)(x+3)