The correct option is
C (x+4)(x+1)(x+7)We have,
(x+4)3−9x−36
=x3+64+12x2+48x−9x−36[∵(a+b)3=a3+b3+3a2b+3ab2]
=x3+12x2+39x+28
By hit and trial x+1 is one of the factor.
So, Divide x3+12x2+39x+28 by x+1, we get
x3+12x2+39x+28=(x+1)(x2+11x+28)
⇒x3+12x2+39x+28=(x+1)(x2+7x+4x+28)
⇒x3+12x2+39x+28=(x+1)[x(x+7)+4(x+7)]
⇒x3+12x2+39x+28=(x+1)(x+4)(x+7)
So, D is the correct option.