The correct option is A f(x)=(x-1)(x+1)(x-2)(x+2)
Let f(x)=x4−5x2+4
factors of 4 = ±1,±2,±4
f(1)=(1)4−5(1)2+4=1−5+4=0
f(−1)=(−1)4−5(−1)2+4=1−5+4=0
f(2)=(2)4−5(2)2+4=16−20+4
∴f(2)=0
f(−2)=(−2)4−5(−2)2+4=16−20+4
∴f(−2)=0
f(4)=(4)4−5(4)2+4=256−80+4
=180≠0
f(−4)=(−4)4−5(−4)2+4=180≠0
By fator theorem,
(x-1), (x+1), (x-2) and (x+2) are factors of f(x).
So, f(x)=(x-1)(x+1)(x-2)(x+2)
Thus, the correct answer is option (a).