Adding and subtracting x3
=x6+5x3+8+x3−x3
=x6+6x3+8−x3
=(x2)3+(2)3+(−x)3−3(x2)(2)(−x)
According to the identity
[x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)]
=(x2+2−x)[(x2)2+(2)2+(−x)2−(x2)(2)−(2)(−x)−(x2)(−x)]
=(x2−x+2)(x4+x2+4−2x2+2x+x3)
=(x2−x+2)(x4+x3−x2+2x+4)
Thus, factors of x6+5x3+8 are (x2−x+2)(x4+x3−x2+2x+4)