Consider the equation a2+7a−8 and factorise it as follows:
a2+7a−8=a2+8a−a−8=a(a+8)−1(a+8)=(a−1)(a+8)
Now, substitute the value of a as a=x3:
a2+7a−8=a2+8a−a−8=a(a+8)−1(a+8)=(a−1)(a+8)=(x3−1)(x3+8)=(x3−13)(x3+23)
=(x−1)(x2+x+1)(x+2)(x2−2x+4)
(Using identities a3+b3=(a+b)(a2+b2−ab) and a3−b3=(a−b)(a2+b2+ab))
Hence, x6+7x3−8=(x−1)(x2+x+1)(x+2)(x2−2x+4)