Factorise (x−y)3 + (y−z)3 + (z−x)3
Let (x - y) = a, (y - z) = b and (z - x) = c ∵ a + b + c = (x - y) + (y -z) + (z -x) = 0
Using identity, a+b+c = 0 ⇒ a3 + b3 + c3 = 3abc ∴ (x - y)3 + (y - z)3 + (z - x)3 = 3(x -y)(y - z)(z - x)
Factorise (x−y)3+(y−z)3+(z−x)3 [3 MARKS]