Let us split the middle terms as shown below:
x3 + 13x2 + 32x + 20 = x3 + 10x2 + 3x2 + 30x + 2x + 20
= x2(x + 10) + 3x(x + 10) + 2(x + 10)
= (x + 10) (x2 + 3x + 2)
= (x + 10) (x2 + 2x + x + 2)
= (x + 10) [x(x + 2) + (x + 2)]
= (x + 10)(x + 2) (x + 1)
Hence, x3 + 13x2 + 32x + 20 = (x + 1) (x + 2)(x + 10).