Factorise x6-y6 Solve This.
Step 1: Factorize the given polynomial
x6-y6=(x2)3-(y2)3
Using the identity a3-b3=(a-b)(a2+b2+ab)
x6-y6=(x2-y2)(x4+y4+x2×y2)
Using the identity a2-b2=(a-b)(a+b)
x6-y6=(x-y)(x+y)(x4+y4+x2y2)
Step 2: Further simplify the factor
adding and subtracting x2y2
x6-y6=(x-y)(x+y)(x4+y4+x2y2+x2y2-x2y2)x6-y6=(x-y)(x+y)(x4+y4+2x2y2-x2y2)
using identity (a+b)2=a2+b2+2ab
x6-y6=(x-y)(x+y)(x4+y4+2x2y2-x2y2)x6-y6=(x-y)(x+y)(x2+y2)2-x2y2
again using identity a2-b2=(a-b)(a+b)
x6-y6=(x-y)(x+y)(x2+y2-xy)(x2+y2+xy)
Hence the factorized form of the polynomial x6-y6 is (x-y)(x+y)(x2+y2-xy)(x2+y2+xy).