Factorization of 64a3–343b3 is:
(4a – 7b) (16a2 + 49b2 + 28ab)
(4a + 7b) (16a2 - 49b2 + 28ab)
(4a – 7b) (16a2 + 49b2 - 28ab)
(4a + 7b) (16a2 + 49b2 + 28ab)
64a3–343b3=(4a)3–(7b)3 We know that x3–y3 = (x–y)(x2+xy+y2) ∴(4a)3–(7b)3=(4a–7b)[(4a)2+(7b)(4a)+(7b)2] =(4a–7b)(16a2+49b2+28ab)