The correct option is C (a+b+1)(1−3a−3b))
⇒1−2a−2b−3(a+b)2
⇒1−2(a+b)−3(a+b)2
⇒−3(a+b)2−2(a+b)+1
Let (a+b)=x,
⇒−3x2−2x+1
⇒−[3x2+2x−1]
⇒−[3x2+3x−1x−1]
⇒−[3x(x+1)−1(x+1)]
⇒−[(x+1)(3x−1)]
⇒(x+1)(1−3x)
Substituting the value of x = (a+b), we get
⇒(a+b+1)(1−3(a+b))
⇒(a+b+1)(1−3a−3b))