2√2a3+16√2b3+c3-12abc
= √8a3+√512b3+c3-12abc
Now √8a3= (√2a)3 √512b3= (√8b)3
and 3(√2a)(√8b)c = 3√16 abc= 3(4)abc = 12abc
Hence the expression follows the pattern x3+y3+z3-3xyz
with x = √2a, y=√8b and z= c
Factors are (x+y+z)(x2+y2+z2-xy-yz-zx)
=( √2a+√8b +c)(2a2+8b2+c2-√16ab-√8bc-√2ac) using √16=4 and √8=2√2 we get
= ( √2a+2√2b +c)(2a2+8b2+c2-4ab-2√2bc-√2ac) Answer