The correct option is D (√2a+2b−3c)(2a2+4b2+9c2−2√2ab+6bc+3√2ac)
We know that,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Thus,
2√2a3+8b3−27c3+18√2abc
Here, a=√2a, b=2b and c=−3c
=(√2a+2b−3c)[(√2a)2+(2b)2+(−3c)2−√2a(2b)−(2b)(−3c)−(−3c)(√2a)]
=(√2a+2b−3c)(2a2+4b2+9c2−2√2ab+6bc+3√2ac)