Factorize: 27p3−1216−92p2+14p
Given:
27p3−1216−92p2+14p
=−(1216−14p+92p2−27p3)
We know that,
a3−3a2b+3ab2−b3=(a−b)3
So lets compare,
((16)3−3(16)2(3p)+3(16)(3p)2−(3p)3) and a3−3a2b+3ab2−b3
a3=(16)3
⇒a=16 ---(2) and
b3=(3p)3
⇒b=3p ---(3)
a3−3a2b+3ab2−b3=(a−b)3
⇒((16)3−3(16)2(3p)+3(16)(3p)2−(3p)3)=(16−3p)3
⇒−((16)3−3(16)2(3p)+3(16)(3p)2−(3p)3)=−(16−3p)3
⇒−((16)3−3(16)2(3p)+3(16)(3p)2−(3p)3)=(3p−16)3
Therefore, 27p3−1216−92p2+14p=(3p−16)3