Put 3a−2b=x,2b−5c=y and5c−3a=z.
We have:
x+y+z=3a−2b+2b−5c+5c−3a=0
Now,
(3a−2b)3+(2b−5c)3+(5c−3a)3
=x3+y3+z3
=3xyz
Here, x+y+z=0.
So,x3+y3+z3=3xyz
=3[(a−2b)×(2b−5c)×(5c−3a)]
factorise;
1. (3a-2b)3 + (2b-5c)3+(5c-3a)3
Factorize 3√3a3−b3−5√5c3−3√15abc
Question 81 (vii)
Add :
3a(2b+5c),3c(2a+2b)