Factorize 4x2+y2+9z2−4xy+6yz−12zx
Given
4x2+y2+9z2−4xy+6yz−12zx
Since, a2+b2+c2+2ab+2bc+2ca=(a+b+c)2
Substitute a=2x,b=−y,c=−3z, we get
(2x)2+(−y)2+(−3z)2+2(2x)(−y)+2(−y)(−3z)+2(−3z)(2x)=[(2x)+(−y)+(−3z)]2
=(2x−y−3z)2=(2x−y−3z)(2x−y−3z)
Hence, the factors of the given expression are (2x−y−3z)(2x−y−3z)