Factorize 64a3–343b3
(4a–7b)(16a2+49b2+28ab)
(4a+7b)(16a2−49b2+28ab)
(4a–7b)(16a2+49b2−28ab)
(4a+7b)(16a2+49b2+28ab)
64a3–343b3=(4a)3–(7b)3 We know that, x3–y3 =(x–y)(x2+xy+y2) ∴(4a)3–(7b)3 =(4a–7b)[(4a)2+(7b)(4a)+(7b)2] =(4a–7b)(16a2+49b2+28ab)
Factorization of 64a3–343b3 is: