Factorize: 75(a+b)2−48(a−b)2.
3(a+9b)(9a+b))
3(a−9b)(9a−b))
3(a+3b)(3a+b))
3(a−9b)(9a+b))
75(a+b)2−48(a−b)2=3{25(a+b)2−16(a−b)2} =3{[5(a+b)]2−[4(a−b)]2} Using the identity:a2−b2=(a−b)(a+b) =3{[5(a+b)−4(a−b)][5(a+b)+4(a−b)]}
=3{(5a+5b−4a+4b)(5a+5b+4a−4b)}
⇒3(a+9b)(9a+b)
(7a2−63b2)=?(a) (7a−9b)(9a+7b)(b) (7a−9b)(7a+9b)(c) 9(a−3b)(a+3b)(d) 7(a−3b)(a+3b)
Factorize: 75(a+b)2−48(a−b)2.