f(a)=a2(b+c)2+b2(c+a)2+c2(a+b)2+abc(a+b+c)+(a2+b2+c2)(bc+ca+ab)
f(−b)=b2(b+c)2+b2(c−b)2−b2c2+(2b2+c2)(bc−bc−b2)
=b2(b2+c2+2b4c2+b2−2bc)
=b2[2b2+2c2]
=2b4+|2b2c2−b2c2−2b4−b2c2=0
∴(a+b) is a factor
Since the expression is cyclic,
(a+b)(b+c)(c+a) are factors.
∴k(a+b+c)(a+b)(b+c)(c+a)
By putting a=0,b=1,c=2, we get
k=1
∴(a+b+c)(a+b)(b+c)(c+a) are the factors.