f(a)=a3(b−c)+b3(c−a)+c3(a−b)
f(b)=b3(b−c)+b3(c−b)+c3(b−b)
=b2(b−c)−b3(b−c)
=0
∴(a−b) is a factor
Since the given expression is cyclic, we get b−c, c−a as two more factors.
∴The given expression can be written as
a3(b−c)+b3(c−a)+c3(a−b)
=k(a−b)(b−c)(c−a)(a+b+c)
Substituting a=0,b=−1,c=−2, we get
−1(2)+8(1)=k(1)(−3)(2)
i,e, k=−1
∴a3(b−c)+b3(c−a)+c3(a−b)
=−(a−b)(b−c)(c−a)(a+b+c)