Factorize each of the following expressions:
127x3−y3+125z3+5xyz
Given: 127x3−y3+125z3+5xyz
∴127x3−y3+125z3+5xyz
=(13x)3+(−y)3+(5z)3−3×(13x)×(−y)×5z
[∵a3+b3+c3−3abc=(a+b+c)(a2+b2+c2
−ab−bc−ca)]
=(x3−y+5z)(x(2)9+y2+25z2+xy3+5yz−5xz3)
Hence, 127x3−y3+125z3+5xyz
=(x3−y+5z)(x29+y2+25z2+xy3+5yz−5xz3).