Let the given polynomial be p(x)=x3+x2+x−14.
We will now substitute various values of x until we get p(x)=0 as follows:
Forx=0p(0)=(0)3+(0)2+0−14=0+0+0−14=−14≠0∴p(0)≠0
Forx=1p(1)=(1)3+(1)2+1−14=1+1+1−14=3−14=−11≠0∴p(1)≠0
Forx=2p(2)=(2)3+(2)2+2−14=8+4+2−14=14−14=0∴p(2)=0
Thus, (x−2) is a factor of p(x).
Now,
p(x)=(x−2)⋅g(x).....(1)⇒g(x)=p(x)(x−2)
Therefore, g(x) is obtained by after dividing p(x) by (x−2) as shown in the above image:
From the division, we get the quotient g(x)=x2+3x+7.
From equation 1, we get p(x)=(x−2)(x2+3x+7).
Hence, x3+x2+x−14=(x−2)(x2+3x+7).