Application: 2 Marks each
(i)x3+3x2+3x−7=(x3+3x2+3x+1)−8 [Adding and subtracting 1]
=(x+1)3−23
={(x+1)−2}{(x+1)2+2(x+1)+22}
=(x+1−2)(x2+2x+1+2x+2+4)
=(x−1)(x2+4x+7)
(ii)x3−3x2+3x+7=(x3−3x2+3x−1)+8 [Adding and subtracting 1]
=(x−1)3+23
=(x−1)+2{(x−1)2−(x−1)×2+22}
=(x−1+2){(x−1)2−2(x−1)+4}
=(x+1)(x2−2x+1−2x+2+4)
=(x+1)(x2−4x+7)