p3(q−r)3+q3(r−p)3+r3(p−q)3
={p(q−r)}3+{q(r−p)}3+{r(p−q)}3
Let
p(q−r)=a,q(r−p)=b and r(p−q)=c
a+b+c=p(q−r)+q(r−p)+r(p−q)
=pq−pr+qr−qp+rp−rq
=pq−pr+qr−pq+pr−qr
=0
∵a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc
∴a3+b3+c3=3abc [∵(a+b+c)=0]
⇒{p(q−r)}3+{q(r−p)}3+{r(p−q)}3=3p(q−r)×q(r−p)×r(p−q)
⇒p3(q−r)3+q3(r−p)3+r3(p−q)3=3pqr(p−q)(q−r)(r−p)