Factorize √3 x2 + 5x + 2√3 = 0 into the form (ax+b)(cx+d)=0.
(√3x + 2) (x + √3) = 0
Multiply √3 with 2√3 and we get 6
Pairs of 6 are
1×6 = 6 sum 1+ 6 = 7
2×3= 6 sum 2+ 3 = 5
So our required pair is 2 and 3
⇒ √3 x2 + 5x + 2√3 = 0
⇒ √3 x2 + 3x + 2x +2√3 = 0
⇒√3x(x+√3 )+ 2(x+√3 )= 0
⇒ (√3x + 2) (x + √3) = 0