Step 1: Factorise the expression
x3+x2−132x
=x(x2+x−132)
=x[x2+(12−11)x−132]
=x[x2+12x−11x−132]
=x[x(x+12)−11(x+12)]
=x[(x−11)(x+12)]
Step 2: Perform the division of the given expression
x3+x2−132xx(x−11)=x(x−11)(x+12)x(x−11)
=(x+12)
∴(x3+x2−132x)÷x(x−11)=(x+12)