Given: a2−14a−51
Since, the coefficient of a2 is unity.
∴Adding and subtracting(12×coefficient of a)2
i.e., (−7)2=(7)2
⇒a2−14a−51
=a2−14a+72−72−51
=a2−14a+72−49−51
=(a2−14a+72)−100
=(a−7)2−102
= (a -7 +10) (a - 7 -10)
= (a + 3) (a - 17)
Hence, a2−14a−51=(a+3)(a−17)