The correct option is
A (x−2)(x−12)In the given polynomial x2−14x+24,
The first term is x2 and its coefficient is 1.
The middle term is −14x and its coefficient is −14.
The last term is a constant term 24.
Multiply the coefficient of the first term by the constant 1×24=24.
We now find the factor of 24 whose sum equals the coefficient of the middle term, which is −14 and then factorize the polynomial x2−14x+24 as shown below:
x2−14x+24
=x2−12x−2x+24
=x(x−12)−2(x−12)
=(x−2)(x−12)
Hence, x2−14x+24=(x−2)(x−12).