Factors of x4−x2−12 are
We have,
x4−x2−12
=x4−(4−3)x2−12
=x4−4x2+3x2−12
=x2(x2−4)+3(x2−4)
=(x2−4)(x2+3)
=(x2−22)(x2+3)
=(x+2)(x−2)(x2+3)
Hence, this is the answer.
Now in each of the pairs of polynomials given below, check whether the first is a factor of the second:
(i) x + 1, x3 − 1
(ii) x − 1, x3 + 1
(iii) x + 1, x3 + 1
(iv) x2 − 1, x4 − 1
(v) x − 1, x4 − 1
(vi) x + 1, x4 − 1
(vii) x − 2, x2 − 5x + 1
(viii) x + 2, x2 + 5x + 6
(ix)
(x) 1.3x − 2.6, x2 − 5x + 6