Figure (10 - E15) shows a small spherical ball of mass m rolling down the loop track. The ball is released on the linear portion at a vertical height H from the lowest point. The circular part shown has a radius R. (a) Find the kinetic energy of the ball when it is at a point A where the radius makes an angle θ with the horizontal. (b) Find the radial and the tangential accelerations of the centre when the ball is at A.
(a) Total kinetic energy,
y=12mv2+12Iω2
Therefore, according to the question
mgH=12mv2+12Iω2+mgR(1+sinθ)
⇒mgH−mgR(1+sin θ)
=12mv2+12Iω2
⇒12mv2+12Iω2=mg(H−R−R sinθ)
(b) To find the acceleration components,
⇒12mv2+12Iω2=mg(H−R−R sin θ)
⇒710mv2=mg(H−R−R sin θ)
⇒v2=107g(H−R−R sin θ)...(i)
⇒v2R=107g[(H−R)−R sin θ]R
→ radial acceleration
⇒v2R=107g[(H−R)−R sin θ]R
⇒2vdvdt=−(107)g R cos θdθdt
⇒ωRdvdt=−(57)g R cos θdθdt
⇒dvdt=−(57) g cos θ
→ tangential acceleration
(c) Normal force at θ = 0, mv2R=(701000)×(107)×10{(0.6−0.1)0.1}=5N
f=mg−ma, g=m(g−a)
=m(10−57×10)
=0.07(10−57×10)
=1100(70−50)=0.2N