wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Figure 14.30 (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring. Figure 14.30 (b) shows the same spring with both ends free and attached to a mass m at either end. Each end of the spring in Fig. 14.30(b) is stretched by the same force F.

(a) What is the maximum extension of the spring in the two cases?

(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the period of oscillation in each case?

Open in App
Solution

(a) For the one block system:

When a force F, is applied to the free end of the spring, an extension l, is produced. For the maximum extension, it can be written as:

F = kl

Where, k is the spring constant

Hence, the maximum extension produced in the spring,

For the two block system:

The displacement (x) produced in this case is:

Net force, F = +2 kx

(b) For the one block system:

For mass (m) of the block, force is written as:

Where, x is the displacement of the block in time t

It is negative because the direction of elastic force is opposite to the direction of displacement.

Where,

ω is angular frequency of the oscillation

∴Time period of the oscillation,

For the two block system:

It is negative because the direction of elastic force is opposite to the direction of displacement.

Where,

Angular frequency,

∴Time period,


flag
Suggest Corrections
thumbs-up
5
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applying SHM
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon