As shown in the figure, ABCD is a square of side a. b is the distance from long wire carrying current
I.
i=i0cos2πtT
Let us consider a strip of thickness dx,distance x from wire.
Now magnetic field across dx thickness will be,
dB=μ0i2πx into the plane.
Flux passing through thickness dx is,
∫Q0dQ=∫b+abdB.(adx)[Q=B.ds]
(a) ϕ=∫b+abμ0i2πxdx=μ0i2πlnb+ab
(b) emf induced e=−dQdt
e=−ddt(μ02πlnb+abi0cos2πtT)
e=μ0i0Tlnb+absin2πtT
(c) Heat developed dH=e2rdt
dH=μ02i02T2r(lnb+ab)2sin(2πtT)2dt
=μ02i02T2r(lnb+ab)2⎡⎢
⎢
⎢⎣1−cos4πtT2⎤⎥
⎥
⎥⎦dt
∫H0dH=∫10T0μ02i022T2r(lnb+ab)2[1−cos4πtT]dt
H=K⎡⎢
⎢
⎢⎣t−sin4πtT4πT⎤⎥
⎥
⎥⎦10T0
H=K⎡⎢
⎢
⎢⎣10T−0−sin40π−04πT⎤⎥
⎥
⎥⎦ where K=μ2i022T2rln(b+ab)2
H=K×10T
H= 5μ2i02Trln(b+ab)2