Given:
ABCD is a cyclic quadrilateral
AB is a diameter of the circle circumscribing ABCD
∠ADC = 140∘
In a cyclic quadrilateral, the sum of opposite angles is 180∘.
Thus, ∠ADC + ∠ABC = 180°
⇒ 140° + ∠ABC = 180°
⇒ ∠ABC = 180° − 140°
⇒ ∠ABC = 40° ...(1)
Since AB is the diameter of the circle
Therefore, ∠ACB = 90° (angle in the semi circle) ...(2)
In ∆ABC,
∠BAC + ∠ACB + ∠ABC = 180° (angle sum property)
⇒ ∠BAC + 90° + 40° = 180° (From (1) and (2))
⇒ ∠BAC + 130° = 180°
⇒ ∠BAC = 180° − 130°
⇒ ∠BAC = 50°
Hence, ∠BAC = 50°.