Ans. n=6. We have
sin3xsin3x=14(3sinx−sin3x):sin3x
=38.2sinxsin3x−18.2sin23x
=38(cos2x−cos4x)−18(1−cos6x)
=−18+38cos2x−38cos4x+18cos6x
∴−18+38cos2x−38cos4x+18cos6x
=nΣm=0Cmcosmx
=C0+C1cosx+C2cos2x+C3cos3x+++Cncosnx (1)
Comparing both sides of (1), we see that n=6.
We also have
C0=−1/8,C1=0,C2=3/8,C3=0,
C4=−3/8,C5=0,C6=1/8